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Abstract
A spectral problem and the associated hierarchy of Schrödinger type equations
are proposed. It is shown that the hierarchy is integrable in Liouville’s sense
and possesses multi-Hamiltonian structure. It is found that several kinds of
important equation such as the Kaup–Newell (KN) equation, the Chen–Lee–Liu
(CLL) equation, the Gerdjikov–Ivanov (GI) equation, the modified Korteweg–
de Vries equation and the Sharma–Tasso–Olever equation are members in the
hierarchy as its special reductions. Moreover, KN, CLL and GI equations
are described by using a unified generalized derivative Schrödinger equation
involving a parameter, and their Hamiltonian structure and Lax pairs are also
given by unified and explicit formulae.

PACS numbers: 0230, 0270H, 0545

AMS classification scheme numbers: 35Q51, 35G25

1. Introduction

It is well known that, given a properly chosen spectral problem, one can relate it to a hierarchy
of nonlinear equations. A central and very important topic in the study of an integrable system
is to search for new Lax or Liouville integrable systems, as many as possible and such that they
are associated with certain evolution equations with physical meaning [1–6]. In this paper, we
consider a spectral problem

yx = Uy =
( −λ2 + βqr λq

λr λ2 − βqr

)
y (1)

where q, r are two potentials, and β is an arbitrary parameter. This spectral problem is a
similar extension of the Kaup–Newell (KN) spectral problem [7, 8]. By setting

ỹ =
(

exp(−β
∫
qr dx) 0

0 exp(β
∫
qr dx)

)
y

q = q̃ exp

(
2β

∫
q̃ r̃ dx

)
r = r̃ exp

(
− 2β

∫
q̃ r̃ dx

) (2)
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and by simple calculation, we know that the spectral problem (1) is equivalent to the standard
KN spectral problem

ỹx =
( −λ2 λq̃

λr̃ λ2

)
ỹ. (3)

A derivative nonlinear Schrödinger (DNLS) equation associated with spectral problem (3) is
the KN equations [7, 8]

qt + qxx + (q2r)x = 0
rt − rxx + (qr2)x = 0.

(4)

To study the effect of higher-order perturbations, another two celebrated DNLS equations
also have been proposed and studied for some years, which are the Chen–Lee–Liu (CLL)
equations [9, 10]

qt + qxx + qrqx = 0

rt − rxx + qrrx = 0
(5)

and Gerdjikov–Ivanov (GI) equations [11, 12]

qt + qxx − q2rx − 1
2q

3r2 = 0
rt − rxx − r2qx + 1

2q
2r3 = 0.

(6)

These three systems (4)–(6) are usually called DNLSI, DNLSII and DNLSIII equations
respectively. It is found that they may be transformed into each other by a gauge transformation,
and the method of gauge transformation also can be applied to some generalized cases [13–17].
In recent years, the spectral problem, Hamiltonian structure, Painlevé property, exact
solutions and other properties associated with the KN equation have been investigated in
detail [7, 8, 14, 15, 18]. Little work has been done on the CLL equation (5) and the GI
equation (6), since corresponding results for these two equations may be obtained from the
KN equation (4) by some gauge transformation in principle [11, 13]. However to obtain their
explicit form, we must solve an integrable equation such as (2) in practice [11, 13, 16]. The
integration will become very complicated with increase of iterative times, especially in multi-
soliton solutions. This is not convenient for their applications and it is necessary to give their
explicit results. In this paper, with the help of the spectral problem (1), we study these three
equations in a unified and explicit way. We first derive a hierarchy of DNLS type equations
corresponding to the spectral problem (1). Then we show that the hierarchy is integrable in
Liouville’s sense and possesses multi-Hamiltonian structure by means of trace identity [1, 2].
It is interesting that several kinds of important equation such as the KN equation, the CLL
equation, the GI equation, the modified KdV equation and the Sharma–Tasso–Olver (STO)
equation [19–21] belong to the hierarchy as special reductions. In this way, the KN, CLL and
GI equations can be described by using a generalized derivative Schrödinger equation with a
parameter. Moreover, their Hamiltonian structure and Lax representation are also established
by unified and explicit formulae.

2. The hierarchy of equations and its Hamiltonian structure

We first solve the adjoint representation of spectral problem (1)

Vx = [U,V ] = UV − VU

with

V =
(
a b

c −a

)
=

∞∑
j=0

(
aj bj
cj −aj

)
λ−j



Integrable systems of derivative nonlinear Schrödinger type and their multi-Hamiltonian structure 515

and obtain the following recursive formulae:

a2j+1 = b2j = c2j = 0

a2jx = qc2j+1 − rb2j+1 = βqr(qc2j−1 − rb2j−1) + 1
2 (qc2j−1x + rb2j−1x)

b2j+1 = − 1
2b2j−1x − qa2j + βqrb2j−1

c2j+1 = 1
2c2j−1x − ra2j + βqrc2j−1.

The above recursion equations can be solved successively to deduce that

a0 = −2 b1 = 2q c1 = 2r

a2 = qr b3 = −qx + (2β − 1)q2r

c3 = rx + (2β − 1)qr2 a4 = 1
2 (qrx − rqx) + 1

4 (8β − 3)q2r2

b5 = 1
4 [2qxx − 4βq2rx − 6(2β − 1)qrqx + (8β2 − 12β + 3)q3r2] (7)

c5 = 1
4 [2rxx + 4βr2qx + 6(2β − 1)qrrx + (8β2 − 12β + 3)q2r3] (8)

a6 = 1
8 [2qrxx + 2rqxx − 2qxrx + 6(2β − 1)qr(qrx − rqx) + (24β2 − 24β + 5)q3r3] (9)

and (
c2j+1

b2j+1

)
= L1L2

(
c2j−1

b2j−1

)
j = 1, 2, . . . (10)

where

L1 = − 1
2

(
r∂−1r −1 + r∂−1q

1 + q∂−1r q∂−1q

)
L2 =

(
0 ∂ − 2βqr

∂ + 2βqr 0

)

are two skew-symmetric operators; that is, L∗
1 = −L1, L∗

2 = −L2.
Consider the auxiliary problem

yt = V (n)y (11)

where

V (n) =
(
�n 0
0 −�n

)
+

n∑
j=0

(
a2jλ

2(n−j)+2 b2j+1λ
2(n−j)+1

c2j+1λ
2(n−j)+1 −a2jλ

2(n−j)+2

)
.

Then the compatibility condition between (1) and (11) gives the zero-curvature equation
Ut − V (n)

x + [U,V (n)] = 0; that is,

β(qr)t = �nx

qt = b2n+1x − 2βqrb2n+1 + 2q�n

rt = c2n+1x + 2βqrc2n+1 − 2r�n

from which we can obtain

�n = β∂−1(qc2n+1x + rb2n+1x) + 2β2∂−1qr(qc2n+1 − rb2n+1) = 2βa2(n+1)

and a hierarchy of evolution equations(
qt
rt

)
= L3L2

(
c2n+1

b2n+1

)
= (L3L2)(L1L2)

(
c2n−1

b2n−1

)

= (L3L2)(L1L2)
n

(
2r
2q

)
n = 1, 2, . . . (12)

where

L3 =
(

1 + 2βq∂−1r 2βq∂−1q

−2βr∂−1r 1 − 2βr∂−1q

)
.
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In the following we will establish the Hamiltonian structure for the hierarchy (12) and
show they are integrable in Liouville’s sense. In order to apply the trace identity [1, 2], we
need to rewrite (12) in another form. We introduce

G2j+1 = (c2j+1 + 2βra2j , b2j+1 + 2βqa2j )
T .

Noting that a2j = ∂−1(qc2j+1 − rb2j+1), we have

(c2j+1, b2j+1)
T = L∗

3G2j+1 (13)

where L∗
3 is a conjugation operator of L3. In this way, the hierarchy (12) can be rewritten in

the form

ut = JG2n+1 = JLG2n−1 = JLnG1 (14)

where u = (q, r)T , J = L3L2L
∗
3, L = L∗

3
−1L1L2L

∗
3.

Proposition 1. JLk (k = 0, 1, 2, . . . , n) are all skew-symmetric operators.

Proof. Since L1 and L2 are skew symmetric, it is clear that J and JL = L3L2L1L2L
∗
3 are

skew symmetric. Suppose that JLk−1 is skew symmetric, then it holds that

(JLk)∗ = (JLk−1L)∗ = L∗(JLk−1)∗ = −L∗JLk−1 = L∗J ∗Lk−1 = −JLLk−1 = −JLk

which implies that JLk is skew symmetric. The proof is completed. �
Following the notation used in [1, 2], we take that the Killing–Cartan form 〈A,B〉 is

tr(AB). Then direct calculation gives〈
V,

∂U

∂q

〉
= cλ + 2βra

〈
V,

∂U

∂r

〉
= bλ + 2βqa

〈
V,

∂U

∂λ

〉
= −4aλ + br + cq.

By using the trace identity, we have
δ

δu
(−4aλ + br + cq) = λ−γ ∂

∂λ
(λγ (cλ + 2βra, bλ + 2βqa)T ). (15)

Substituting

a =
∑
n�0

a2nλ
−2n b =

∑
n�0

b2n+1λ
−2n−1 c =

∑
n�0

c2n+1λ
−2n−1

into equation (15) leads to
δ

δu
(−4a2n+2 + rb2n+1 + qc2n+1) = (−2n + γ )G2n+1(c̄2n+1, b̄2n+1)

T . (16)

To fix the γ , we let n = 0 in (16) and find γ = 0. Therefore we conclude that

G2n+1 = δHn

δu
(17)

where

H0 = 2qr Hn = 4a2n+2 − rb2n+1 − qc2n+1

2n
n � 1. (18)

Combining (14) with (17) gives the desired multi-Hamiltonian structure of the generalized
KN hierarchy (12)

ut = J
δHn

δu
= JL

δHn−1

δu
= JLn δH0

δu
n = 1, 2, . . . . (19)

Finally we discuss the integrability of the hierarchy (12) or (19). It is crucial to show the
existence of infinite involutive conserved densities. Usually the inner product between two
functions f and g is defined by (f, g) = ∫

f · g dx, and the Poisson bracket is defined by
{f, g} = (

δf

δu
, J

δg

δu
). In particular, f and g are called involutive if {f, g} = 0.
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Proposition 2. The Hamiltonian functions {Hn} (n = 0, 1, . . .) given by (18) constitute
common conserved densities for the whole hierarchy (19).

Proof. By using proposition 1, we find that

{Hn,Hm} =
(
δHn

δu
, J

δHm

δu

)
= (LnG1, JL

mG1) = (LnG1, L
∗JLm−1G1)

= (Ln+1G1, JL
m−1G1) = {Hn+1, Hm−1}.

Repeating the above argument gives

{Hn,Hm} = {Hm,Hn} = {Hm+n,H0}. (20)

On the other hand, we find

{Hm,Hn} = (LmG1, JL
nG1) = (J ∗LmG1, L

nG1) = −{Hn,Hm}. (21)

Then combining (20) with (21) leads to

{Hm,Hn} = 0

which implies that {Hm} are in involution. Furthermore we have( ∫
Hm dx

)
t

=
(
δHm

δu
, ut

)
=

(
δHm

δu
, J

δHn

δu

)
= {Hm,Hn} = 0

which shows that {Hm} are also conserved densities. The proof is completed. �
In summary, we arrive at the following result.

Theorem 1. (i) The hierarchy (19) is an integrable Hamiltonian system in the Liouville sense.
(ii) The Hamiltonian functions {Hm} are conserved densities of the whole hierarchy (19) and
they are involutive in pairs.

3. Some important equations in the hierarchy

In the following, we provide some interesting equations that are contained in the hierarchy (19)
and give them the explicit formulation of Hamiltonian structure and Lax pairs.

Example 1. The first system of the hierarchy (19) (n = 1) is a set of generalized DNLS
equations

qt + qxx − 2(2β − 1)qrqx − (4β − 1)q2rx − β(4β − 1)q3r2 = 0
rt − rxx − 2(2β − 1)qrrx − (4β − 1)r2qx + β(4β − 1)q2r3 = 0

(22)

which is a unified expression of KN, CLL and GI equations (4)–(6). They correspond to β = 0,
β = 1/4 and β = 1/2 of equations (22) respectively. According to theorem 1, we conclude
that system (22) is Liouville integrable and possesses the bi-Hamiltonian structure

ut = J
δH1

δu
= JL

δH0

δu

where Hamiltonian functions H0 and H1 are

H0 = 2qr H1 = 1
2 [rqx − qrx + (4β − 1)q2r2]. (23)

The Lax pairs corresponding to the system (22) may be given by the spectral problem (1) and
the auxiliary problem

yt = V (1)y V (1) =
(
v11 v12

v21 −v11

)
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with

v11 = −2λ4 + qrλ2 + β(rqx − qrx) + 1
2β(8β − 3)q2r2

v12 = 2qλ3 + [−qx + (2β − 1)q2r]λ v21 = 2rλ3 + [rx + (2β − 1)qr2]λ.

Example 2. The second system of the hierarchy (19) (n = 2) is

qt − 1
4 [2qxxx − 6(2β − 1)rq2

x − 6(4β − 1)qqxrx − 6(2β − 1)qrqxx
+6(2β − 1)(4β − 1)q3rrx + 3(8β2 − 12β + 3)q2r2qx

+4β(2β − 1)(4β − 1)q4r3] = 0
rt − 1

4 [2rxxx + 6(2β − 1)qr2
x − 6(4β − 1)rqxrx + 6(2β − 1)qrrxx

+6(2β − 1)(4β − 1)qr3qx + 3(8β2 − 12β + 3)q2r2rx

−4β(2β − 1)(4β − 1)q3r4] = 0

(24)

which reduces to the MKdV equation for r = 1, β = 1/2

qt − 1
4 (2qxxx − 3q2qx) = 0

and the STO equation [19–21] for r = 1, β = 1/4

qt − 1
8 (4qxxx + 6q2

x + 6qqxx + 3q2qx) = 0.

The system (24) is Liouville integrable and possesses the tri-Hamiltonian structure

ut = J
δH2

δu
= JL

δH1

δu
= JL2 δH0

δu

where H0 and H1 are defined by (22), and

H2 = 1
8 [qrxx + rqxx + (8β − 3)(q2rrx − r2qqx) + 2(2β − 1)(4β − 1)q3r3].

The Lax pairs corresponding to the system (24) are given by spectral problem (1) and the
auxiliary problem

yt = V (2)y =
(
v11 v12

v21 −v11

)
y

with

v11 = −2λ6 + qrλ4 + 1
4 [2(qrx − rqx) + (8β − 3)q2r2]λ2 + 2βa6

v12 = 2qλ5 + [−qx + (2β − 1)q2r]λ3 + b5λ

v21 = 2rλ5 + [rx + (2β − 1)qr2]λ3 + c5λ

where a6, b5 and c5 are given by (7)–(9).

In summary, starting from spectral problem (1), we derive a hiearchy of DNLS type
equations (19), which is actually a generalization of KN hierarchy (β = 0) [1, 7, 8]. More
importantly, the hierarchy (19) contains five kinds of well known equation (KN, CLL, GI,
MKdV and STO equations). Among them only the KN equation belongs to the KN hierarchy.
It is also interesting that the KN, CLL and GI equations can be expressed by a generalized
DNLS equation involving a parameter. Their Hamiltonian structure and Lax pairs are also
given by unified and explicit formulae.
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